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Sequence Learning
• Instances of the form x = <x1, x2, x3, …, xT> 

• Variable sequence length T 

• Learn a transition function f with parameters W: 

• f should update hidden state ht and output yt 

h0 := 0 

for t = 1, 2, 3, …, T: 

<yt, ht> = fW(xt, ht-1)
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Sequence Learning
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Equivalent to a T-layer deep network, unrolled in time



Sequence Learning
• What should the transition function f be? 

!

!

!

!

• At a minimum, we want something non-linear and 
differentiable
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Sequence Learning
• A “vanilla” RNN: 

ht = σ(Whxxt + Whhht-1 + bh) 

zt = σ(Whzht + bz) 

• Problems 

• Difficult to train — vanishing/exploding gradients 

• Unable to “select” inputs, hidden state, outputs



Sequence Learning

Long Short-Term Memory (LSTM) 
Proposed by Hochreiter and Schmidhuber, 1997



Sequence Learning

LSTM 
(Hochreiter & 

Schmidhuber, 1997)

• Allows long-term 
dependencies to be 
learned 

• Effective for 
• speech 

recognition 
• handwriting 

recognition 
• translation 
• parsing



Sequence Learning
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Sequence Learning
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Activity Recognition
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Image Description
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Video Description
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Sequence learning features now available in Caffe. 
Check out PR #2033 

“Unrolled recurrent layers (RNN, LSTM)”



Training Sequence Models
• At training time, want the model to predict the next time 

step given all previous time steps: p(wt+1 | w1:t) 
• Example: A bee buzzes.

input output

0 <BOS> a

1 a bee

2 bee buzzes

3 buzzes <EOS>



Sequence Input Format
• First input: “cont” (continuation) indicators (T x N) 
• Second input: data (T x N x D)

a dog fetches <EOS> the bee

0 1 1 1 0 1

cat in a hat <EOS> a

0 1 1 1 1 0

buzzes <EOS> a

1 1 0

tree falls <EOS>

1 1 1

N = 2, T = 6
batch 1 batch 2…



Sequence Input Format
• Inference is exact over infinite batches 
• Backpropagation approximate — truncated at batch 

boundaries

a dog fetches <EOS> the bee

0 1 1 1 0 1

cat in a hat <EOS> a

0 1 1 1 1 0

buzzes <EOS> a

1 1 0

tree falls <EOS>

1 1 1

N = 2, T = 6
batch 1 batch 2…



Sequence Input Format
• Words are usually represented as one-hot vectors

0 
0 
0 
. 
. 
0 
1 
0 
. 
. 
0

“bee”

8000D vector; 
all 0s except 

index of 
wordvocabulary 

with 8000 
words

a 
the 
am 
. 
. 

cat 
bee 
dog 

. 

. 
run

0 
1 
2 
. 
. 

3999 
4000 
4001 

. 

. 
7999



Sequence Input Format
• EmbedLayer projects one-hot vector
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Image Description
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Video Description
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Venugopalan et al., “Sequence to Sequence -- Video to Text,” 2015. 
http://arxiv.org/abs/1505.00487 

N timesteps: watch video M timesteps: produce caption

http://arxiv.org/abs/1505.00487

