Sequences in Caffe

Jeff Donahue CVPR Caffe Tutorial June 6, 2015

- Instances of the form $\mathbf{x} = \langle x_1, x_2, x_3, \dots, x_T \rangle$
- Variable sequence length T
- Learn a transition function f with parameters W:
- f should update hidden state h_t and output y_t

 $h_0 := 0$

for t = 1, 2, 3, ..., T:

 $< y_t, h_t > = f_W(x_t, h_{t-1})$

Equivalent to a T-layer deep network, unrolled in time

• What should the transition function f be?

At a minimum, we want something non-linear and differentiable

• A "vanilla" RNN:

 $h_t = \sigma(W_{hx}X_t + W_{hh}h_{t-1} + b_h)$

 $z_t = \sigma(W_{hz}h_t + b_z)$

- Problems
 - Difficult to train vanishing/exploding gradients
 - Unable to "select" inputs, hidden state, outputs

Long Short-Term Memory (LSTM) Proposed by Hochreiter and Schmidhuber, 1997

- Allows long-term dependencies to be learned
- Effective for
 - speech recognition
 - handwriting recognition
 - translation
 - parsing

LSTM (Hochreiter & Schmidhuber, 1997)

Exactly remember Output Input previous σ σ Gate Gate cell state $h_t = z_t$ discard input Input Modulation C, Gate Forget Gate X, **C**t-1 h_{t-1} C_{t-1}

> LSTM (Hochreiter & Schmidhuber, 1997)

(Hochreiter & Schmidhuber, 1997)

Activity Recognition

sequential input

Video Description

sequential input & output

Sequence learning features now available in Caffe. Check out PR #2033 "Unrolled recurrent layers (RNN, LSTM)"

Training Sequence Models

- At training time, want the model to predict the next time step given all previous time steps: p(w_{t+1} | w_{1:t})
- Example: A bee buzzes.

	input	output
0	<bos></bos>	а
1	а	bee
2	bee	buzzes
3	buzzes	<eos></eos>

- First input: "cont" (continuation) indicators (T x N)
- Second input: data (T x N x D)

		N = 2,	T = 6	6				
batch 1							bat	ch 2
а	dog	fetches	<eos></eos>	the	bee	buzzes	<eos></eos>	а
0	1	1	1	0	1	1	1	0
cat	in	а	hat	<eos></eos>	а	tree	falls	<eos></eos>
0	1	1	1	1	0	1	1	1

- Inference is exact over infinite batches
- Backpropagation approximate truncated at batch boundaries

		N = 2,	T = 6	6				
batch 1							bat	ch 2
а	dog	fetches ·	<eos></eos>	the	bee	buzzes	<eos></eos>	а
0	1	1	1	0	1	1	1	0
cat	in	а	hat	<eos></eos>	а	tree	falls	<eos></eos>
0	1	1	1	1	0	1	1	1

• Words are usually represented as one-hot vectors

 $\left(\right)$ ()а the 1 O8000D vector; 2 ()am all Os except index of vocabulary word with 8000 3999 cat ()"bee" words 4000 bee dog 4001 ()run

• EmbedLayer projects one-hot vector

Image Description

A female tennis player in action on the court.

A group of young men playing a game of soccer.

A man riding a wave on top of a surfboard.

Image Description

A black and white cat is sitting on a chair.

A large clock mounted to the side of a building.

A bunch of fruit that are sitting on a table.

Video Description

Venugopalan et al., "Sequence to Sequence -- Video to Text," 2015. <u>http://arxiv.org/abs/1505.00487</u>